Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.03.498624

ABSTRACT

Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions, and plays immunopathological roles in inflammatory diseases, we investigated whether C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill COVID-19 patients compared to patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular trap (NET)s-dependent immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonist of C5aR1 could be useful for COVID-19 treatment. Keywords: COVID-19, C5aR1, C5a, SARS-CoV-2, Myeloid cells, Neutrophils, NETs


Subject(s)
Multiple Organ Failure , Respiratory Distress Syndrome , Infections , Death , COVID-19 , Influenza, Human
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.18.21251504

ABSTRACT

COVID-19 is a disease of dysfunctional immune responses, but the mechanisms triggering immunopathogenesis are not established. The functional plasticity of macrophages allows this cell type to promote pathogen elimination and inflammation or suppress inflammation and promote tissue remodeling and injury repair. During an infection, the clearance of dead and dying cells, a process named efferocytosis, can modulate the interplay between these contrasting functions. Here, we show that engulfment of SARS-CoV2-infected apoptotic cells (AC) exacerbates inflammatory cytokine production, inhibits the expression of efferocytic receptors, and impairs continual efferocytosis by macrophages. We also provide evidence that monocytes from severe COVID-19 patients express reduced levels of efferocytic receptors and fail to uptake AC. Our findings reveal that dysfunctional efferocytosis of SARS-CoV-2-infected cell corpses suppress macrophage anti-inflammation and efficient tissue repair programs and provide mechanistic insights for the pathogenesis of the hyperinflammation and extensive tissue damage associated with COVID-19.


Subject(s)
COVID-19 , Sexual Dysfunction, Physiological , Severe Acute Respiratory Syndrome , Inflammation
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.25.20200329

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as coronavirus disease-2019 (COVID-19). SARS-CoV-2 infects the lungs and may cause several immune-related complications such as lymphocytopenia and cytokine storm which are associated with the severity of the disease and predict mortality . The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is not fully understood. Here we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS- CoV-2 in T helper cells in a mechanism that also requires ACE2 and TMPRSS2. Once inside T helper cells, SARS-CoV-2 assembles viral factories, impairs cell function and may cause cell death. SARS-CoV-2 infected T helper cells express higher amounts of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may explain the poor adaptive immune response of many COVID- 19 patients.


Subject(s)
Ataxia Telangiectasia , Severe Acute Respiratory Syndrome , COVID-19 , Lymphopenia
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.07.20170043

ABSTRACT

Introduction: The progression and severity of the coronavirus disease 2019 (COVID-19), an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), varies significantly in the population. While the hallmarks of SARS-CoV-2 and severe COVID-19 within routine laboratory parameters are emerging, little is known about the impact of sex and age on these profiles. Methods: We performed multidimensional analysis of millions of records of laboratory parameters and diagnostic tests for 178,887 individuals, of which 33,266 tested positive for SARS-CoV-2. These included complete blood cell count, electrolytes, metabolites, arterial blood gases, enzymes, hormones, cancer biomarkers, and others. Results: COVID-19 induced more alterations in the laboratory parameters in males compared to females between 13 and 60 years old, in contrast to older individuals, where several parameters were altered by COVID-19 in both men and women. Biomarkers of inflammation, such as C-reactive protein (CRP) and ferritin, were increased especially in older men with COVID-19, whereas other markers such as abnormal liver function tests were common across several age groups, except for young women. Low peripheral blood basophils and eosinophils were also more common in the elderly with COVID-19. Both male and female COVID-19 patients admitted to the intensive care unit (ICU) displayed alterations in the coagulation system, and higher levels of neutrophils, CRP, lactate dehydrogenase (LDH), among others. Discussion: Our study uncovers the laboratory profile of a large cohort of COVID-19 patients that underly discrepancies influenced by aging and biological sex. These profiles directly link COVID-19 disease presentation to an intricate interplay between sex, age and the immune response.


Subject(s)
Communicable Diseases , Neoplasms , COVID-19 , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL